Кафедра госпитальной хирургии ЮУГМУ
 

Тяжелый комбинированный иммунодефицитный синдром (SCID)

    Тяжелые комбинированный иммунодефицитный синдром (SCID) - это наследственное нарушение у детей, характеризующееся глубоко дефективной или отсутствием Т клеточной и В клеточной функций. SCID часто оказывается фатальным в течение первого года жизни, несмотря на проведение терапевтической трансплантации стволовых клеток или в случае дефицита аденозин деаминазы (ADA) про-веденного замещения фермента. Ранее выявление пораженных пациентов до развития у них оппорту-нистических инфекций является критическим для достижении благоприятного исхода. Диагноз SCID считается подтвержденным, когда у пораженного ребенка определяется лимфопения (<1500 cell/mm3; нормальными пределами считаются 4000-13500 cells/mm3), менее, чем 20% CD3+ Т-лимфоцитов и тяжелая гипогаммаглобулинемия (IgG, ,150 mg/dL). Наличие циркулирующих трансплацентарно при-обретенных материнских Т клеток выявляемых при проведении теста на гистосовместимость (человеческий лейкоцитарный антиген, HLA) является окончательным подтверждением диагноза SCID, пока не будет доказано иное.

    Несмотря на имеющуюся генетическую гетерогенность, у пациентов с SCID имеется много общего в течение первых 6 месяцев жизни. 

    Обычно у пораженных детей могут развиться следующие инфекции:

    • Бактериальные
    • Грам-негативный сепсис
    • Диссеминация бациллы Calmette-Guerin после иммунизации
    • Вызванный грибками и простейшими
    • Кандидиаз
    • Аспергиллез
    • Pneumocystis carinii пнемовния
    • Вирусные

    Цитомегаловирус

    Вирусы Parainfluenza

    Аденовирусы

    Респираторный синцитиальный вирус

    Диссеминированная варицелла (ветряная оспа)

    Вакцинально-приобретенный паралитический полимиелит

    Molluscum contagiosum 

    Также может иметь место отсутствие набора веса вторичное к диарее или мальабсорбции. Появление раннего начала эритематозной макулопапулярной сыпи, не реагирующей на медицинское лечение, может указывать на хроническое заболевание трансплантант против хозяина (GVHD) при пересадке материнских Т клеток. У большинства пациентов с SCID имеется гипоплазия тимуса и отсутствие или мелкие, слаборазвитые лимфатические узлы и тонзиллы; гепатоспленомегалия может выявляться у детей пораженных материнской GVHD. Рентгенограммы грудной клетки часто дают отсутствие тени тимуса и слабо выраженный легочной рисунок, несмотря на наличие существенных респираторных симптомов. 

    У большинства SCID пациентов количество периферических CD3+ Т -клеток составляет 500 cells/mm3 или менее (нормальные границы 3000-6500 cells/mm3) и различное количество В и естественных киллеров (NK) лимфоцитов в зависимости от основного генетического дефекта. SCID можно класси-фицировать в соответствие с наличием или отсутсвтием В и NK клеток на T-B+NK+ , T-B+ NK- , T- B-NK+ , T-B-NK- и атипичный Т+В+ синдромы (табл. 1). У пациентов с ADA дефицитом имеется наи-меньшее количество циркулирующих лимфоцитов, в то время, как у пациентов с неизвестным аутосо-мально рецессивным (AR) T+B+ SCID, ZAP-70 дефицитом и материнским Т-клеточным внедрением имеется наибольшее количество лимфоцитов, часто в пределах нормальных границ. Пациенты с SCID анергичны в отношении кожного теста на гиперчувствительность отсроченного типа и результа-ты измерения in vitro Т-клеточной функции оказываются существенного сниженными до 10% или ме-нее от нормальных значений. 

    Кроме малого количества циркулирующих Т-лимфоцитов, выраженной гипогаммаглобулинемии отме-чается и особенное снижение IgG. Уровень IgG сыворотки в нормальных границах обычно является отражением материнских антител у маленьких детей с SCID или внутривенного введения гаммаглобу-лина (IVIG). Уровни IgA и IgM в сыворотке ранжируются от их отсутствия до нормальных возрастных значений. Наличие определяемого сыворотчного IgE и эозинофилии обычно имеет место у детей с материнским GVHD или синдромом Omenn (OS). Несмотря на наличие сывороточных иммуноглобу-линов у некоторых SCID пациентов выработка антиген-специфических антител отсутствует; поэтому использование антитело-зависимых методов, таких как энзим-связанный иммуносорбентный тест для скрининга экспозиции к инфекционным агентам у пациентов с SCID дают фальшь-негативные резуль-таты или оказываются фальшь-позитивными из-за введения IVIG. Вместо этого следует применять непосредственное определение антигена иммунофлюоресценцией или путем реакции полимеризации цепи для диагностики инфекции у иммунодефитных пациентов. 

    Единственным лечением SCID является реконституция гематопоетической стволовой клетки. Опти-мальным лечением является трансплантация костного мозга (BMT) или трансплантация перифериче-ских стволовых клеток от тканесовместимого брата или сестры. К сожалению, для большинства паци-ентов HLA-идентичный семейный донор отсутствует. Часто проводится Т-клеточно-опустошенная гаптоидентичная BMT от родителей и оказывается успешной для многих пациентов с SCID. Также для реконституции иммунной системы применялась matched unrelated BMT или трансплантация стволо-вой клетки крови пупочного канатика. Основными осложнениями трансплантации являются отторже-ние трансплантанта, GVHD, инфекции и токсичность химиотерапии. Некоторым пациентам требуется продолжительная иммуносупрессия для контроля GVHD или пожизненный IVIG, если приживление донорских В клеток не удалось осуществить, а нормальная В-клеточная функция не восстановилась. 

    Х-связанный тяжелый комбинированный синдром иммунодефицита 

    На Х-связанный SCID (ХSCID) приходится от 30 до 40% всех случаев SCID и, как считается, он развивается у 1-2 на 100 000 родов. Его тип наследования был установлен на основании большого числа родословных, где мальчики из последующих поколений умерли в раннем детстве в результате не-управляемых вирусных или грибковых инфекций. Дефект при ХSCID был идентифицирован в 1993 го-ду, как обычная g цепь (gс) рецептора интерлейкина (IL)-2. Последующие исследования показали, что gс также является частью рецепторов для четырех дополнительных цитокинов: IL-4, IL-7, IL-9 и IL-15. Молекула gс кажется незаменимой для внутриклеточной трансмиссии сигналов активации возни-кающих при цитокин-цитокин рецепторном взаимодействиях, которые необходимы для пролиферации и созревания лимфоцитов. Отсутствие gс-содержащих рецепторных комплексов проявляется ранней приостановкой Т-клеточного и NK-клеточного развития и выработкой незрелых В-клеток, которые вы-зывают дефективное переключение изотипов необходимое для выработки IgG, IgA IgE. Взаимодей-ствие между IL-7 и его рецептором является особенно критическим для дифференциации лимфоид-комиттированных клеток предшественников из плюрипотентных стволовых клеток. Этот иммунодефи-цит представляется прототипичную T-B+NK- форму SCID. 
    Большинство пациентов мужского пола пораженных XSCID имеют абсолютное количество лимфоци-тов менее, чем 2000 cells/mm3 в периферической крови, с менее чем 200 cells/mm3 CD3+ T клеток (границы 0-800 клеток/мм3), менее, чем 100 cells/mm3 NK клеток и повышенный процент (часто >75%) В лимфоцитов (табл.2). Уровни IgG и IgA в сыворотке чрезвычайно низки и специфическая выработка антител отсутствует. И наоборот, уровни IgM и IgE в сыворотке могут оказаться нормальными в ре-зультате материнского Т-клеточного внедрения. In vitro Т-клеточная и NK-клеточная функции оказы-ваются, как правило, слабыми. У большинства детей пораженных XSCID присутствуют определяемые при HLA типировании материнские Т лимфоциты в их крови. Явный GVHD может развиться, если присутствует значительное количество материнских Т клеток, способных реагировать на полученные от родителей HLA антигены. Наличие лимфоцитоза, нормальные уровни IgM и IgE, гепатомегалия, лимфаденопатия и хронической сыпи в результате материнской GVHD часто задерживают выявление XSCID. 
    Множественные различные мутации в гене IL2RG были идентифицированы у XSCID потомков. В от-личие от кистозного фиброза ни одной обычной мутации не происходит при XSCID; тем не менее, не-которые «hot spots» были идентифицированы в гене, в котором часто идентифицируются мутации. Как было показано, некоторые мутации оказывают относительно слабые воздействия на функцию gс; у таких пациентов имеется тенденция к меньшей лимфопении, лучше сохраняемой Т-клеточной функ-ции и более близким к норме уровням в сыворотке Ig. Эти дети часто классифицируются, как имею-щие неизвестный AR T+ B+ SCID, задерживающий распознание их в основе лежащего генетического дефекта. Так как в большинстве XSCID семей имеются отдельные мутации, то последовательные анализы кодирующих регионов гена IL2RG должны производиться для характеристики вредных мута-ций. Секвенсирование материнской ДНК также может осуществляться для подтверждения мутаций; однако, у более, чем 50% пациентов мужского пола с XSCID имеется спонтанно возникшая IL2RG му-тация без доказательства наследственной мутантной материнской Х хромосомы при секвенировании ДНК или при не слепом характере инактивации Х хромосомы. Гистосовместимый или гаплоидентич-ный ВМК или трансплантация периферической или стволовой клетки пупочного канатика дают иммунную реконституцию у большинства мальчиков с XSCID. In utero ВМТ успешно лечит пораженные пло-ды, а генная терапия кажется должна стать реальной возможностью 

    JAK3 энзимный дефицит 

    У девочек и некоторых мальчиков с типичным T-B+NK- SCID фенотипом отсутствуют мутации в IL2RG гене. Эти пациенты, многие из которых рождены от родителей родственников, вместо этого имеют AR SCID вызванный мутациями в обеих аллелях JAK3 энзима. Дефицит JAK3 энзима был впервые опи-сан в 1995 году и на него может приходиться от 10 до 20% всех случаев SCID. JAK3 - это цитоплазма-тическая тирозин киназа, которая связана с gс и необходима для трансдукции цитокин-связанных сигналов с gс-содержащих цитокиновых рецепторов. Мутации в JAK3 препятствуют прохождению сигнала через эти рецепторы, подтверждая тем самым наблюдение, что gс функция находится в абсолютной зависимости от активации JAK3, располагающихся ниже по току прохождения сигнала. JAK3 мутации различны и имеют тенденцию быть уникальными для каждого отдельного семейства. Многие исклю-чают JAK3 mRNA или протеиновую экспрессию, но описаны исключения, которые проявляются более слабо выраженным фенотипом SCID и выработкой некоторых Т и NK клеток. 

    Дефицит интерлейкин-7 рецептора 

    Дефекты цепи a IL-7-рецептора (IL-7Ra) представляют собой редкие причины AR SCID. Фенотип IL-7Ra дефицита схож с таковым XSCID и JAK3 дефицитом при существенном исключении. В отличие от этих иммунных дефектов IL-7Ra дефицит не приостанавливает развитие NK-клеток и рассматрива-ется как T- B- NK+ форма SCID. 

    Дефицит интерлейкина-2 

    Были опубликованы сообщения об отдельных семьях с дефектами в выработке IL-2. У пациентов с IL-2 дефицитом сохраняются относительно нормальные количества периферических лимфоцитов (T+ B+ SCID) и гипогаммальбуминемия. In vitro функция Т-клеток снижена, но поддается коррективроке при добавлении рекомбинанта IL-2. В основе лежащие генетические дефекты у этих пациентов неизвестны, но как считается, они поражают регуляцию транскрипции гена IL-2. Парентеральная терапия ре-комбинантом IL-2 может дать частичную иммунную реконституцию у этих пациентов. 

    Дефицит RAG 1 и 2 

    Дети с дефектами лимфоцито-специфическими рекомбиназа-активирующими генами (RAG) 1 или 2 (RAG1 и RAG2) были впервые описаны в 1996 году. RAG 1 или RAG 2 проявляются первичной фор-мой T-B-NK+ SCID и на них может приходиться от 10 до 20% всех случаев. Функция RAG 1 и RAG 2 незаменима для поколений Т-клеточных и В-клеточных антигенных рецепторов (TCR и BCR, соответ-ственно). Во время Т-клеточного и В-клеточного онтогенеза хромосомальная ДНК содержащая раз-личные вариабельные (V), диверсивные (D) и добавочные (J) сегменты TCR генов иммуноглобулина перестраивается для выработки функциональных антигенных рецепторов. V(D)J рекомбинация дает диверсиновсть антигенного рецептора и способность иммунной системе человека реагировать на бо-лее, чем 108 антигенов. Неспособность совершать V(D)J рекомбинацию проявляется в остановке со-зревания Т-клеток и В-клеток на ранней стадии лимфоцитарной дифференцировки при полном отсут-ствии всех Т и В клеток и агаммаглобулинемией. NK клетки не экспрессируют антиген-специфических рецепторов и их развитие не нарушается при дефективной RAG-1 или RAG-2 функции. Мутации как в RAG1, так и в RAG2 были идентифицированы у потомком лиц с T-B-NK+ SCID. Тяжелые RAG1 мута-ции развиваются во внутренних фрагментах протеина и могут оказаться более частыми, чем отклоне-ния в RAG2. 

    Синдром Omenn’a (OS) 

    OS - это редкое AR нарушение, описанное в 1965 году Omenn, как SCID, характеризующийся следующими симптомами :

    • Физикальные данные
    • Эритродерма
    • Лимфаденопатия
    • Гепатоспленомегалия
    • Неспособность набора веса вторичная к диарее
    • Генерализированный отек
    • Лихорадка
    • Лабораторные данные 
      Гипоальбуминемия 
      Эозинофилия (>1000 клеток на мм3) 
      Изменяющееся число лимфоцитов 
      От сниженного до повышенного количество CD3+ Т клеток 
      Отсутствие В клеток 
      Нормальное количество NK клеток 
      Явно дефективная Т-клеточная и В-клеточная функции 
      Гипогаммаглобулинемия 
      Существенного пониженные уровни IgG, IgM и IgA 
      Гипер-IgE (>1000 IU/mL) 


    В 1998 году у пациентов с OS были идентифицированы мутации в RAG1 или RAG2, проявлявшиеся в частичной V(D)J активности рекомбиназы и развитием редко активированных, но анергичных, олиго-клональных Т клеток. 
    Эти клинические проявления характерны для OS и отличают его от других форм SCID. В течение многих лет считалось, что OS является тяжелым вариантом материнского GVHD, но внедренных ма-теринских Т лимфоцитов определить не удалось. У пораженных детей количество периферических Т лимфоцитов оказывалось от существенного сниженного до нормального уровней. Во многих случаях количество CD3+ Т лимфоцитов оказывалось нормальным, но отсутствовали циркулирующие В клет-ки. Иммуноглобулины сыворотки не определялись, за исключением существенного повышенного уров-ня IgE (часто >1000 IU/mL). Также как при полном дефиците RAG 1 или 2 дефиците, количество NK клеток остается нормальным у пациентов с OS. OS рассматривается как T- B- NK+ форма SCID, но на-личие олигоклональных Т клеток, которые развиваются благодаря редким успешным V(D)J рекомби-национным проявлениям, путает диагноз. Гипер IgE обусловлен наличием в не-лимфоидных тканях редких В клеток, которые простимулированы на выработку IgE клетками хелперами, направленными на выработку IL-4 IL-5 и обычно встречающихся при гиперчувствительности или аллергических забо-леваниях. Наличие лимфаденопатии отличает OS от других форм SCID без материнской GVHD. Гис-тологическое исследование лимфатических узлов при OS выявляет нарушение архитектуры, отсутст-вие образования фолликул и чрезмерную инфильтрацию эозинофилами, гистиоцитами и активиро-ванными Т клетками. Кожа также массивно инфильтрирована воспалительными клетками. 
    Анализ секвенции ДНК у пациентов с OS обнаруживает мутации в RAG1 или RAG2, которые не пол-ностью устраняют V(D)J активность рекомбиназы. По неизвестным причинам частичная RAG1 или RAG2 функция проявляется в более продуктивной перестройке TCR, чем BCR, так олигоклональные Т клетки присутствуют, а циркулирующие В клетки очень редки. Интересно, что большинство поражен-ных детей рождены от родителей не имеющих родственных связей. До ВМТ, необходимо исключить материнскую GVHD. Эти дети также часто оказываются тяжело больными с лихорадкой, протеин-теряющей энтеропатией и генерализованным отеком из-за воспаления кишечника и кожи. Аблативная хемотерапия и иммуносупрессия необходимы для предотвращения отторжения трансплантанта акти-вированными аутологичными Т лимфоцитами. Предпочтение отдается ткане-совместимой ВМТ, так у пациентов с OS повышен риск неудачи гаплоидентичной трасплантации. 

    Тяжелый комбинированный Navajo синдром 

    Navajo SCID - это AR мутация случающаяся приблизительно у 1 из 2000 живых новорожденных у Ath-abascan Native Americans. В основе лежащий генетический дефект остается неизвестным но маппиру-ется на хромосоме 10р при проведении анализа потомков. Клинические проявления Navajo SCID сходны с таковыми при других формах SCID за исключением необычного явления наблюдаемого у большинства пациентов в течение первых 4 месяцев жизни - не связанного с вирусом герпеса ораль-ных и генитальных язв. Пораженные дети дают лимфопению (300-1800 клеток на мм3), при количест-ве Т и В клеток менее, чем 200 клеток на мм3. In vitro функция Т клеток и уровни сывороточного имму-ноглобулина существенно снижены, в то время, как NK клетки имеются в избытке и их активность нормальна, поэтому Navajo SCID класссифицируется как T- B- NK+ SCID, но не связанный с дефектив-ной RAG-1 или RAG-2 функцией. Наличие NK активности осложняет проведение ВМТ увеличивая риск отторжения трансплантанта. Интенсивное пре-ВМТ аблативное кондиционирование необходимо для осуществления трансплантации у пораженных детей. 

    Дефицит аденозин деаминазы 

    На дефицит ADA приходится приблизительно 15% всех случаев SCID. Впервые он был описан в 1972 году. В отличие от других форм SCID, при которых мутации специфически поражают Т- клеточные и часто В- клеточные функции, ADA дефицит проявляется метаболическим отравлением всех клеток, с наиболее выраженными воздействиями на лимфоциты и лимфоидные прогениторы. ADA дефицит - это наиболее частая форма T- B- NK- SCID. 
    ADA - это широко распространенный энзим пути расщепления пуринов, который катализирует деами-нацию аденозина и деоксиаденозина в инозин и в деоксиинозин. Отсутствие ADA проявляется накоп-лением этих субстратов интрацеллюлярной и в экстрацеллярной жидкостях. Значительно повышен-ный уровень деоксиаденозин трифосфата в лимфоцитах связан с интрацеллюлярным захватом и фосфориляцией деоксиаденозина, что может объяснить почему лимфоциты так чувствительны к ток-сичным побочным эффектам этих метаболитов. Аденозин, деоксиаденозин и деоксиаденозин три-фосфат ингибируют различные клеточные процессы, включая активность рибонуклеоитидной редук-тазы, что приводит к смерти клетки и повреждению тканей. Активность эритроцитарной ADA, как пра-вило, измеряется при постановке диагноза ADA дефицита, но обычно оказывается ниже, чем в лим-фоцитах. 
    Клинический и лабораторный спектр дефицита ADA довольно широк и зависит от тяжести лежащих в основе генных мутаций. Скрининг большой группы здоровых взрослых показал, что 7% или более нормальной активности эритроцитарной ADA ассоциирует с интактным иммунитетом; поэтому SCID и менее тяжелые иммунные дефекты при дефиците ADA связаны с мутациями в гене ADA, которые устраняют или почти полностью выключают функцию энзима. Приблизительно у 80% пациентов име-ет место его раннее начало, классический дефицит ADA и развитие в первые 3 месяца жизни. Отли-чительной клинической характеристикой у приблизительно 50% этих пациентов являются скелетные аномалии, первичные образование чашеобразных углублений (cupping) и постепенное сведение на нет или распространение наружу (flaring) костохондральных соединений видимых на рентгенограмме грудной клетке. Эти пациенты сохраняют 0,01% или менее активности ADA, у них имеется алимфоци-тоз (<100 клеток на мм3) и тяжелая пангипогаммаглобулинемия. In vitro Т-клеточная и В-клеточная функции отсутствуют. Гепатит, почечные и нейрологические отклонения и, возможно сенсонейральная потеря слуха, могут иметь место с большой частотой при раннем начале ADA-дефицитарном SCID. 
    Приблизительно от 15% до 20% случаев дефицита ADA не диагносцируются вплоть до возраста 1-2 года; эти пациенты классифицируются, как имеющие отсроченное позднее начало SCID вызванным менее разрушительными мутациями в гене ADA. Пораженные дети сохраняют 0,1% до 2% активности ADA, количество периферических лимфоцитов крови оказывается менее 500 клеток на мм3, но менее тяжелую гипоальбуминемию на первом году жизни; тем не менее, снижение числа Т и В клеток и их функций происходит довольно быстро и вскоре после этого развивается инфекция. Позднее начало дефицита ADA имеет место у 5% и менее пациентов и характеризуется диагнозом комбиниро-ванного иммунодефицита между 3 и 15 годами жизни, которому обычно предшествует история перситирующей герпетической инфекции и рекурентных инфекций верхних дыхательных путей, часто Streptococcus pneumoniae. 
    Аутоиммунные заболевания, особенно гемолитическая анемия и тромбоцитопенияассоциируют с поздним началом ADA дефицита. Лабораторные данные отличительны и включают 2% до 5% актив-ности ADA, количество циркулирующих лимфоцитов менее, чем 800 клеток/мм3, количество CD3+ T-клеток менее, чем 500 клеток на мм3 и эозинофилию. Может развиться гипогаммаглобулинемия с от-сутсвтием IgG2 и повышенным уровнем в сыворотке IgE. In vitro Т-клеточная функция и специфиче-ские реакции антител, в частности, на полисахаридные антигены, значительно снижены. Были описа-ны изолированные семьи с началом во взрослом возрасте и частичным ADA дефицитом. 
    Измерения активности ADA эритроцитов не надежно у пациентов получавших трансфузии; вместо этого должна измеряться функция энзима в лимфоцитах или фибробластах для подтверждения диаг-ноза ADA дефицита. Пренатальный диагноз ADA дефицита осуществляется путем скрининга на ак-тивность энзима в клетках полученных от плода, но должен сопровождаться для подтверждения сек-венсией ДНК. У иммунодефицитарных пациентов было идентифицировано более 60 различных мута-ций. Большинство из них кластировано в секвенциях ДНК кодирующих амино кислоты участвующие в связывании субстрата или обладающих каталитическими функциями. Более, чем 50% мутаций у па-циентов с дефицитом ADA полностью выключают активность энзима и проявляются ранним началом SCID. В отличие от других форм AR SCID, при которых просматривается тенденция пациентов к го-мозиготности в отношении одной и той же мутации, большинство ADA дефицитных пациентов являются смешанно гетерозиготными в отношении двух различных мутантных ADA аллелей. 
    Оптимальной терапией ADA-дефицитного SCID является ткане-совместимая BMT. Приживление гап-лоидентичной BMT, даже с проведением претрансплантарной аблации, кажется сниженным при ADA дефиците по сравнению с другими диагнозами SCID. Уровень смертности также может оказаться уве-личенным. По этим причинам гаплоидентичная BMT обычно не проводится для лечения ADA дефици-та; вместо этого пораженные пациенты при отсутствии потенциального ткане-совместимого донора часто лечатся терапией замещения ADA. Замещение энзима не требует захвата ADA в лимфоциты, чтобы оказать благоприятный эффект на Т и В клеточные функции. Токсические метаболиты присут-ствуют в экстрацеллюлярной жидкости и пребывают в равновесии с интрацеллюлярными продуктами; поэтому снижение уровня метаболитов в плазме путем их деградации парентерально вводимой ADA приводит к снижению концетрации внутриклеточных метаболитов. Полиетилен-глюкол связаннный (PEG)-говяжья ADA применяется с 1986 года и дает частичную иммунную реконституцию и длитель-ное улучшение состояния и выживаемость пораженных пациентов. Пациенты с ранним началом SCID обычно получают от 30 до 60 U/kg/в неделю PEG-ADA; доза может снижаться у детей с возрастом. Недостатками PEG-ADA терапии является высокая стоимость и необходимость частых введений и тщательного мониторинга уровня метаболитов. 
    Реконституция иммунитета в детей получающих PEG-ADA не полная, с улучшением числа В клеток и функции, чем таковых Т клеток. Пациенты остаются лимфопеничными (<1000 клеток на мм3) с коли-чеством CD3+ T клеток менее, чем 500 клеток на мм3 и от 20% до 75% нормальной Т-клеточной функ-цией; тем не менее, нормальные уровни сывороточных Ig и специфические реакции антител разви-ваются у более, чем 50% пациентов, позволяя прекратить введение IVIG. Может ли частичная иммун-ная реконституция PEG-ADA поддерживаться в течение многих лет, неизвестно. У многих пациентов развиваются антитела к PEG-ADA, но они обычно незначительны. Развитие патогенных ADA антител, аутоантител и злокачественности может вызывать озабоченность при вхождении детей длительное время получавших PEG-ADA во взрослую жизнь. 
    ADA дефицит был первым нарушением лечащимся генной терапией гематопоетических клеток. Неко-торые ADA-дефицитарные пациенты, включая трех новорожденных, получали ADA ген-корректированные аутологичные зрелые Т лимфоциты или костномозговые или пупочного канатика стволовые клетки. Хотя и казалось, что ADA корректированные лимфоциты имеют селективные преимущества роста над ADA-дефицитарными клетками, ни один из пациентов не был излечен от SCID или прекратил полностью получение PEG-ADA терапии. Запланированы новые исследования, векторный дизайн и неадекватная трансдуктивная эффективность человеческих гематопоетических стволовых клеток остаются существенными препятствиями в достижении успеха генной терапии дефицита ADA.